The epidemiology of COVID-19 in the US is poorly understood. Identifying the key processes that shape transmission and estimating the relevant model parameters is therefore an important task. This document presents arguments and analysis to support the estimation of a number of key quantities.
Findings are preliminary and subject to change, pending future changes in the underlying data. Results have not been peer-reviewed, but have been prepared to a professional standard with the intention of providing useful information about a rapidly developing event.
Key parameters to be investigated in this document include:
Key resources used for this investigation include:
A ``line list’’ maintained by CEID containing case level information in the US, including start dates for key individual events (presentation of symptoms, hospitalization, case notification, etc.)
Note: This data set is being actively updated as we find more information.
count | Date_symptoms | Exposure_end | inc_period |
---|---|---|---|
1 | 2020-03-11 | 2020-03-11 | 0 |
2 | 2020-02-29 | 2020-02-21 | 8 |
3 | 2020-02-25 | 2020-02-22 | 3 |
4 | 2020-02-27 | 2020-02-22 | 5 |
5 | 2020-03-09 | 2020-03-07 | 2 |
6 | 2020-03-02 | 2020-02-27 | 4 |
7 | 2020-03-03 | 2020-02-20 | 12 |
8 | 2020-03-03 | 2020-02-20 | 12 |
9 | 2020-03-03 | 2020-02-20 | 12 |
10 | 2020-03-07 | 2020-03-06 | 1 |
11 | 2020-03-05 | 2020-02-25 | 9 |
12 | 2020-02-29 | 2020-02-23 | 6 |
13 | 2020-03-08 | 2020-03-04 | 4 |
14 | 2020-01-19 | 2020-01-15 | 4 |
## [1] "gamma distribution for incubation period: "
## shape rate
## 2.4265511 0.3846971
## (0.8940880) (0.1574260)
## [1] "exponential distribution for incubation period: "
## rate
## 0.17073171
## (0.04562997)
count | Date_symptoms | Date_hospital | iso_period |
---|---|---|---|
1 | 2020-03-11 | 2020-03-12 | 1 |
2 | 2020-03-03 | 2020-03-03 | 0 |
3 | 2020-03-08 | 2020-03-09 | 1 |
4 | 2020-02-29 | 2020-03-03 | 3 |
5 | 2020-02-28 | 2020-03-13 | 14 |
6 | 2020-02-25 | 2020-03-05 | 9 |
7 | 2020-03-02 | 2020-03-08 | 6 |
8 | 2020-02-28 | 2020-03-09 | 10 |
9 | 2020-03-06 | 2020-03-10 | 4 |
10 | 2020-03-05 | 2020-03-09 | 4 |
11 | 2020-03-11 | 2020-03-15 | 4 |
12 | 2020-02-22 | 2020-02-27 | 5 |
13 | 2020-02-28 | 2020-03-05 | 6 |
14 | 2020-03-05 | 2020-03-11 | 6 |
15 | 2020-01-19 | 2020-01-19 | 0 |
## [1] "gamma distribution for isolation period of values >0: "
## shape rate
## 2.2835303 0.4066561
## (0.8385025) (0.1669356)
## [1] "exponential distribution for isolation period: "
## rate
## 0.20547945
## (0.05305457)
count | Date_symptoms | Date_reported | rep_period |
---|---|---|---|
1 | 2020-03-11 | 2020-03-12 | 1 |
2 | 2020-02-29 | 2020-03-03 | 3 |
3 | 2020-03-03 | 2020-03-05 | 2 |
4 | 2020-03-08 | 2020-03-12 | 4 |
5 | 2020-02-24 | 2020-03-07 | 12 |
6 | 2020-02-25 | 2020-03-02 | 6 |
7 | 2020-02-27 | 2020-03-02 | 4 |
8 | 2020-02-29 | 2020-03-06 | 6 |
9 | 2020-03-09 | 2020-03-15 | 6 |
10 | 2020-03-02 | 2020-03-08 | 6 |
11 | 2020-03-09 | 2020-03-15 | 6 |
12 | 2020-03-02 | 2020-03-06 | 4 |
13 | 2020-03-01 | 2020-03-08 | 7 |
14 | 2020-02-28 | 2020-03-15 | 16 |
15 | 2020-03-01 | 2020-03-07 | 6 |
16 | 2020-03-03 | 2020-03-05 | 2 |
17 | 2020-03-03 | 2020-03-05 | 2 |
18 | 2020-03-03 | 2020-03-05 | 2 |
19 | 2020-02-25 | 2020-03-06 | 10 |
20 | 2020-03-02 | 2020-03-08 | 6 |
21 | 2020-02-28 | 2020-03-10 | 11 |
22 | 2020-03-06 | 2020-03-11 | 5 |
23 | 2020-03-05 | 2020-03-11 | 6 |
24 | 2020-03-07 | 2020-03-12 | 5 |
25 | 2020-03-05 | 2020-03-06 | 1 |
26 | 2020-03-11 | 2020-03-18 | 7 |
27 | 2020-02-22 | 2020-03-03 | 10 |
28 | 2020-02-24 | 2020-03-13 | 18 |
29 | 2020-03-10 | 2020-03-14 | 4 |
30 | 2020-03-02 | 2020-03-14 | 12 |
31 | 2020-02-29 | 2020-03-06 | 6 |
32 | 2020-02-19 | 2020-02-28 | 9 |
33 | 2020-03-11 | 2020-03-11 | 0 |
34 | 2020-02-28 | 2020-03-08 | 9 |
35 | 2020-03-07 | 2020-03-09 | 2 |
36 | 2020-03-08 | 2020-03-11 | 3 |
37 | 2020-03-02 | 2020-03-12 | 10 |
38 | 2020-03-03 | 2020-03-13 | 10 |
39 | 2020-03-05 | 2020-03-13 | 8 |
40 | 2020-01-19 | 2020-01-21 | 2 |
41 | 2020-02-27 | 2020-02-28 | 1 |
## [1] "gamma distribution for reporting period of values >0: "
## shape rate
## 2.26894979 0.36303227
## (0.47479041) (0.08498792)
## [1] "exponential distribution for reporting period: "
## rate
## 0.1640000
## (0.0256125)
A skew normal distribution is used due to a few negative reporting to death intervals.
The univariate skew normal distribution has a density function that can be written
\(f(y)=2\phi(y)\Phi(\alpha y)\)
where \(\alpha\) is the shape parameter. Here, \(\phi\) is the standard normal density and \(\phi\) its cumulative distribution function. When \(\alpha\)=0 the result is a standard normal distribution. When \(\alpha\)=1 it models the distribution of the maximum of two independent standard normal variates. When the absolute value of the shape parameter increases the skewness of the distribution increases. The limit as the shape parameter tends to positive infinity results in the folded normal distribution or half normal distribution. When the shape parameter changes its sign, the density is reflected about y=0.
The mean of the distribution is \(\mu=\alpha\sqrt 2/(\pi (1+\alpha^2))\)
and these are returned as the fitted values. The variance of the distribution is \(1-\mu^2\). The Newton Raphson algorithm is used unless the nsimEIM argument is used.
count | State | Date_reported | Date_death | rep_period |
---|---|---|---|---|
1 | California | 2020-02-28 | 2020-03-09 | 10 |
2 | California | 2020-03-04 | 2020-03-04 | 0 |
3 | Colorado | 2020-03-13 | 2020-03-13 | 0 |
4 | Florida | 2020-03-05 | 2020-03-06 | 1 |
5 | Florida | 2020-03-06 | 2020-03-06 | 0 |
6 | Georgia | 2020-03-07 | 2020-03-12 | 5 |
7 | Georgia | 2020-03-12 | 2020-03-18 | 6 |
8 | Georgia | 2020-03-15 | 2020-03-18 | 3 |
9 | Georgia | 2020-03-15 | 2020-03-18 | 3 |
10 | Georgia | 2020-03-15 | 2020-03-19 | 4 |
11 | Georgia | 2020-03-15 | 2020-03-19 | 4 |
12 | Georgia | 2020-03-19 | 2020-03-19 | 0 |
13 | Indiana | 2020-03-10 | 2020-03-17 | 7 |
14 | Indiana | 2020-03-11 | 2020-03-16 | 5 |
15 | Louisiana | 2020-03-11 | 2020-03-14 | 3 |
16 | Louisiana | 2020-03-11 | 2020-03-16 | 5 |
17 | Missouri | 2020-03-17 | 2020-03-18 | 1 |
18 | Pennsylvania | 2020-03-19 | 2020-03-19 | 0 |
19 | South Carolina | 2020-03-14 | 2020-03-16 | 2 |
20 | South Dakota | 2020-03-10 | 2020-03-16 | 6 |
21 | Washington | 2020-02-29 | 2020-02-29 | 0 |
22 | Washington | 2020-03-01 | 2020-03-01 | 0 |
23 | Washington | 2020-03-01 | 2020-02-29 | -1 |
24 | Washington | 2020-03-01 | 2020-03-01 | 0 |
25 | Washington | 2020-03-02 | 2020-03-06 | 4 |
26 | Washington | 2020-03-02 | 2020-03-01 | -1 |
27 | Washington | 2020-03-02 | 2020-03-01 | -1 |
28 | Washington | 2020-03-03 | 2020-03-03 | 0 |
29 | Washington | 2020-03-03 | 2020-02-26 | -6 |
30 | Washington | 2020-03-04 | 2020-03-06 | 2 |
31 | Washington | 2020-03-04 | 2020-03-08 | 4 |
32 | Washington | 2020-03-04 | 2020-03-03 | -1 |
33 | Washington | 2020-03-05 | 2020-03-06 | 1 |
34 | Washington | 2020-03-07 | 2020-03-02 | -5 |
35 | Washington | 2020-03-07 | 2020-03-05 | -2 |
## [1] "gamma distribution for reporting period of values >0: "
## shape rate
## 2.9080256 0.7270063
## (0.8946631) (0.2441147)
## [1] "exponential distribution for reporting period: "
## rate
## 0.25000000
## (0.05735393)
## [1] "skew normal distribution for reporting period: "
## Call: sn::selm(formula = data.us.death$rep_period ~ 1, family = "SN")
## Number of observations: 35
## Family: SN
## Estimation method: MLE
## Log-likelihood: -90.76827
## Parameter type: CP
##
## CP residuals:
## Min 1Q Median 3Q Max
## -7.6866 -1.6866 -0.6866 2.3134 8.3134
##
## Regression coefficients
## estimate std.err z-ratio Pr{>|z|}
## mean 1.6866 0.5476 3.0798 0.002
##
## Parameters of the SEC random component
## estimate std.err
## s.d. 3.2400 0.392
## gamma1 0.1249 0.407
## Call: sn::selm(formula = data.us.death$rep_period ~ 1, family = "SN")
## Number of observations: 35
## Family: SN
## Estimation method: MLE
## Log-likelihood: -90.76827
## Parameter type: DP
##
## DP residuals:
## Min 1Q Median 3Q Max
## -5.5394 0.4606 1.4606 4.4606 10.4606
##
## Regression coefficients
## estimate std.err z-ratio Pr{>|z|}
## xi -0.4606 2.4166 -0.1906 0.849
##
## Parameters of the SEC random component
## estimate std.err
## omega 3.8869 1.413
## alpha 0.9595 1.391
mean | location | shape | scale | |
---|---|---|---|---|
mean | 1.69 | -0.46 | 0.96 | 3.89 |
## Call: sn::selm(formula = data.us.death$rep_period ~ 1, family = "ST")
## Number of observations: 35
## Family: ST
## Estimation method: MLE
## Log-likelihood: -90.67899
## Parameter type: DP
##
## DP residuals:
## Min 1Q Median 3Q Max
## -6.05745 -0.05745 0.94255 3.94255 9.94255
##
## Regression coefficients
## estimate std.err z-ratio Pr{>|z|}
## xi 0.05745 2.91373 0.01972 0.984
##
## Parameters of the SEC random component
## estimate std.err
## omega 3.342 1.532
## alpha 0.705 1.512
## nu 12.649 30.536
## mean~ s.d.~ gamma1~ gamma2~
## 1.6852408 3.2103799 0.1819830 0.5299179
## xi omega alpha nu
## 0.05745157 3.34193323 0.70497317 12.64911707